Given equation of line is 3x+2=2y+1=2z−3=λ(say) ⇒x=3λ−2, y=2λ−1,z=2λ+3…(1) ∴ Coordinates of any point on the line are (3λ−2,2λ−1,2λ+3)
The distance between this point and (1,2,3) is 26 ∴(3λ−2−1)2+(2λ−1−2)2+(2λ+3−3)2=26 ⇒9λ2+9−18λ+4λ2+9−12λ+4λ2=18 ⇒17λ2−30λ=0 ⇒λ(17λ−30)=0 ⇒λ=0,1730
Substituting the values of λ in (1), we get the required point as (−2,−1,3) or (1756,1743,17111).