The given conic is ax+by=1
Squaring both sides, ax+by+2abxy=1
or ax+by−1=−2abxy
Squaring again, (ax+by−1)2=4abxy
or a2x2−2abxy+b2+y2−2ax−2by+1=0…(1)
Comparing the equation (1) with the equation Ax2+2Hxy+By2+2Gx+2Fy+C=0 ∴A=a2,H=−ab,B=b2,G=−a,F=−b,C=1
Then, Δ=ABC+2FGH−AF2−BG2−CH2 =a2b2−2a2b2−a2b2−a2b2−a2b2=−4a2b2=0
and H2=a2b2=AB
So we have Δ=0 and H2−AB=0. Hence the given equation represent a parabola.