Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The complex number z = x + iy satisfy the equation | (z-5i/z+5i)| = 1 lies on
Q. The complex number
z
=
x
+
i
y
satisfy the equation
∣
z
+
5
i
z
−
5
i
∣
=
1
lies on
1328
189
AMU
AMU 2015
Complex Numbers and Quadratic Equations
Report Error
A
the x-axis
45%
B
the straight line
y
=
5
24%
C
a circle passing through origin
24%
D
None of the above
7%
Solution:
We have,
z
=
x
+
i
y
∴
∣
∣
z
+
5
i
z
−
5
i
∣
∣
=
1
⇒
∣
z
−
5
i
∣
=
∣
z
+
5
i
∣
⇒
∣
x
+
i
y
−
5
i
∣
=
∣
x
+
i
y
+
5
i
∣
⇒
∣
x
+
(
y
−
5
)
i
∣
=
∣
x
+
(
y
+
5
)
i
∣
⇒
x
2
+
(
y
−
5
)
2
=
x
2
+
(
y
+
5
)
2
⇒
x
2
+
(
y
−
5
)
2
=
x
2
+
(
y
+
5
)
2
⇒
(
y
−
5
)
2
=
(
y
+
5
)
2
⇒
y
2
−
10
y
+
25
=
y
2
+
10
y
+
25
⇒
20
y
=
0
⇒
y
=
0
∴
z
lies on
X
-axis.