Since, (1−x)(1−2x)(1−3x)1 =(1−x)−1(1−2x)−1(1−3x)−1 =(1+x+x2+x3+x4)(1+2x+4x2+8x3+16x4) (1+3x+9x2+27x3+81x4)
[Expand till x4 -term because coefficient of x4 is required and (1−ax)−n =1+ax+a2x2+a3x3+………..]
So, coefficient of x4 is 81+54+36+24+16+27+18+12+8+9+6+4+3+2+1=301