Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The coefficient of x13 in the expansion of (1 - x)5(1 + x + x2 + x3)4 is
Q. The coefficient of
x
13
in the expansion of
(
1
−
x
)
5
(
1
+
x
+
x
2
+
x
3
)
4
is
1599
242
NTA Abhyas
NTA Abhyas 2020
Binomial Theorem
Report Error
A
24
19%
B
12
11%
C
6
6%
D
4
64%
Solution:
Let,
E
=
(
1
−
x
)
5
(
(
1
+
x
)
(
1
+
x
2
)
)
4
=
(
1
−
x
)
(
1
−
x
)
4
(
1
+
x
)
4
(
1
+
x
2
)
4
=
(
1
−
x
)
(
1
−
x
2
)
4
(
1
+
x
2
)
4
=
(
1
−
x
)
(
1
−
x
4
)
4
=
(
1
−
x
)
(
1
−
4
x
4
+
6
x
8
−
4
x
12
+
x
16
)
Coefficient of
x
13
is
(
−
1
)
(
−
4
)
=
4