Let C1(h,k) be the centre of the required circle. Then, (h−0)2+(k−0)2=(h−1)2+(k−0)2 ⇒h2+k2=h2−2h+1+k2 ⇒−2h+1=0⇒h=1/2
Since, (0,0) and (1,0) lie inside the circle x2+y2=9.
Therefore, the required circle can touch the given circle
internally.
i.e. C1.C2=r1∼r2 ⇒h2+k2=3−h2+K2 ⇒2h2+k2=3⇒241+K2=3 ⇒41+k2=23⇒41+k2=49 ⇒k2=2⇒k=±2