The given circles
Let S1≡x2+y2+6x−1=0,
Centre C1=(−3,0), Radius R1=10 S2≡x2+y2−3y+2=0, C2=(0,3/2),R2=1/2 S3=x2+y2+x+y−3=0 C3=(−1/2,−1/2),R3=7/2
Let S≡x2+y2+2gx+2fy+c=0 be equation of circle which cut orthogonal all three circles.
Then, by condition of orthogonality −2g(−3)+2(−f)(0)=c−1 ⇒6g=c−1...(i) −2g(0)+2f(−3/2)=c+2 ⇒−3f=c+2...(ii) −2g(−1/2)+2f(1/2)=c−3 ⇒g+f=c−3...(iii)
On solving Eqs. (i), (ii) and (iii), we get g=1/7,f=−9/7
So, centre is (−g,−f)=(−1/7,9/7)