Let a and b be the positive numbers.
Then 2a+b=1843⇒a+b=275
and ab=15⇒ab=225
so, (a−b)2=(a+b)2−4ab=(275)2−4×225 =(275+30)(275−30)=2135×215 ⇒a−b=±(215×3)=±(245)
Case1 →a+b=275,a−b=245 ⇒a=30,b=245
Case2 →a+b=275,a−b=−245 ⇒a=215,b=30
So, larger of the two numbers is 30