To determine the area of triangle, use formula Δ=21∣AB×AC∣.
The vertices of △ABC are given as A(1,1,2),B(2,3,5) and C(1,5,5)
First, we find vectors AB and AC.
Now, AB=PV of B−PV of A=(2i^+3j^+5k^)−(i^+j^+2k^) =(2−1)i^+(3−1)j^+(5−2)k^=i^+2j^+3k^
and AC=PV of C−PV of A =(i^+5j^+5k^)−(i^+j^+2k^) =(1−1)i^+(5−1)j^+(5−2)k^=4j^+3k^ ∴AB×AC=∣∣i^10j^24k^33∣∣ =i^(6−12)−j^(3−0)+k^(4−0)=−6i^−3j^+4k^
Comparing with x=xi^+yj^+zk^, we get x=−6,y=−3,z=4 ∴∣AB×AC∣=x2+y2+z2=(−6)2+(−3)2+(4)2 =36+9+16=61
Area of ΔABC=21∣AB×AC∣=21×61=261 sq units.
Hence, the area of △ABC is 261 sq units.