∣cosx−sinx∣≤y≤sinx
Intersection point of cosx−sinx=sinx ⇒tanx=21
Let ψ=tan−121
So, tanψ=21,sinψ=51,cosψ=52
Area =ψ∫π/2(sinx−∣cosx−sinx∣)dx =ψ∫π/4(sinx−(cosx−sinx))dx +π/4∫π/2(sinx−(sinx−cosx))dx =ψ∫π/4(2sinx−cosx)dx+π/4∫π/2cosxdx =[−2cosx−sinx]ψπ/4+[sinx]π/4π/2 =−2−21+2cosψ+sinψ+(1−21) =−2−21+2(52)+(51)+1−21 =5−22+1