⇒ Let z=x+iy,x,y∈R
Now zˉ=iz2
then x−iy=i(x2−y2+2xyi) x−iy=i(x2−y2)−2xy ⇒x=−2xy&−y=x2−y2 ⇒x(1+2y)=0 x=0 or y=−21
Put x=0 in −y=x2−y2
We get y=y2 ⇒y=0,1
Similarly
Put y=−21 in −y=x2−y2 ⇒21=x2−41 ⇒x2=43 x=±23 z=(0,i,23−21i,−23−21i)
Area =21⋅(3)(23) =433