We have, x=−2y2 ⇒y2=−21x...(i)
and x=1−3y2 ⇒y2=−31(x−1)...(ii)
From Eqs. (i) and (ii), we get −21x=−31(x−1) ⇒3x=2(x−1) ⇒3x=2x−2 ⇒x=−2 ∴y2=−21(−1)=1 ⇒y=±1 ∴ Point of intersection of two curves is (−2,±1) ∴ Required Area =20∫1sinxdx =2[y−3y3]01 =2[1−31] =34 sq units