Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The area of the circle centred at (1, 2) and passing through (4, 6) , is
Q. The area of the circle centred at
(
1
,
2
)
and passing through
(
4
,
6
)
, is
1555
227
MHT CET
MHT CET 2007
Report Error
A
5
π
sq unit
B
10
π
sq unit
C
25
π
sq unit
D
None of these
Solution:
The equation of a circle centred at
(
1
,
2
)
and passing through
(
4
,
6
)
is
(
x
−
1
)
2
+
(
y
−
2
)
2
=
(
4
−
1
)
2
+
(
6
−
2
)
2
⇒
x
2
+
y
2
−
2
x
−
4
y
+
1
+
4
=
9
+
16
⇒
x
2
+
y
2
−
2
x
−
4
y
−
20
=
0
Now, radius
=
(
−
1
)
2
+
(
−
2
)
2
+
20
=
1
+
4
+
20
=
5
∴
Area of circle
=
π
r
2
=
25
π
sq unit