Given curves y=2x2, y=max{x−[x],x+∣x∣} =max{(x),x+∣x∣}
Now, graph of {x}
and graph of x+ mode ∣x∣=⎩⎨⎧0,2x,x<0x≥0
Now, area bounded by y=2x2 and y=max{{x},x+∣x∣}=x+∣x∣
and lines x=0,x=2 is ∴ Required area =0∫1(2x−2x2)dx+∫12(2x2−2x)dx =[22x2−32x3]01+[32x3−22x2]12 =(1−32)+(316−4−32+1) =31+314−3=5−3=2