Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The angular points of a triangle are A (-1, -7), B(5, 1) and C(1, 4). The equation of the bisector of the angleABC is
Q. The angular points of a triangle are
A
(
−
1
,
−
7
)
,
B
(
5
,
1
)
and
C
(
1
,
4
)
. The equation of the bisector of the
∠
ABC is
1757
227
WBJEE
WBJEE 2018
Report Error
A
x = 7y + 2
20%
B
7y = x + 2
80%
C
y = 7x + 2
0%
D
7x = y + 2
0%
Solution:
Here,
A
B
=
(
5
+
1
)
2
+
(
1
+
7
)
2
=
36
+
64
=
10
BC
=
(
1
−
2
2
+
(
4
−
1
)
2
=
16
+
9
=
5
By angle bisector theorem,
A
P
:
CP
=
10
:
5
=
2
:
1
∴
P
(
2
+
1
2
×
1
+
1
×
(
−
1
)
,
2
+
1
2
×
4
+
1
×
(
−
7
)
)
=
P
(
3
1
,
3
1
)
Required equation of
BP
is
y
−
1
=
3
1
−
5
3
1
−
1
(
x
−
5
)
⇒
y
−
1
=
−
14
−
2
(
x
−
5
)
⇒
7
y
−
7
=
x
−
5
⇒
7
y
=
x
+
2