Note: The angle θ between the two lines a1x−x1=a2y−y1=a3z−z1
and b1x−x2=b2y−y2=b3z−z2 is given by: cosθ=a12+a22+a32b12+b22+b32a1b1+a2b2+a3b3
Now in the given equation: a1=2,a2=2,a3=−1 b1=1,b2=2,b3=2 ∴cosθ=4+4+14+4+12×1+2×2+(−2)×1=94 ⇒θ=cos−1(94)