Given equation of parabola is y2=4x
Here, 4a=4⇒a=1
Equation of tangent at (x,y) is y=mx+ma
Here, (x,y)=(1,4) ∴4=m+m1 ⇒m2−4m+1=0 ⇒m=24±16−4=24±23=2±3
Let m1=2+3,m2=2−3
Let angle between the tangents is θ1 Then, tanθ=1+m1m2m1−m2 =1+(2+3)(2−3)2+3−2+3 =1+4−323 ⇒tanθ=3=tan3π ∴θ=3π