Given lines and planes are 33x−1=−1y+3=45−2z Or 1x−31=−1y+3=−2(z−25) and 3x−3y−6z=0 ⇒x−y−2z=0
Here, a1=1,b1=−1,c1=−2
and a2=1,b2=−1,c2=−2 ∴sinθ=a12+b12+c12a22+b22+c22a1a2+b1b2+c1c2 =1+1+41+1+41×1+(−1)×(−1)+(−2)×(−2) =666=1 ⇒θ=2π