Q.
The angle between a pair of tangents drawn from a point P to the circle x2+y2+4x−6y+9sin2α+13cos2α=0 is 2α . The equation of the locus of the point P is
We have equation of circle x2+y2+4x−6y+9sin2α+13cos2α=0
Here, C=(−2,3)
Radius =(−2)2+(3)2−(9sin2α+13cos2α)=4+9−9sin2α−13cos2α =13−13(1−sin2α)−9sin2α =13sin2α−9sin2α =4sin2α=2sinα
Here, sinα=PCAC ⇒PCsinα=AC ⇒PC2sin2α=AC2=(2sinα)2 ⇒[(h+2)2+(k−3)2]sin2α=4sin2α ⇒(h+2)2+(k−3)2=4 ⇒h2+4+4h+k2+9−6k=4 ⇒h2+k2+4h−6k+9=0
Hence, locus of a point is x2+y2+4x−6y+9=0