Q.
Tangents are drawn from any point on the hyperbola 4x2−9y2=36 to the circle x2+y2−9=0. The locus of mid-point of chord of contact is (9x2−4y2)=(kx2+y2)2, where k∈N. Find k.
H:9x2−4y2=1
Equation of AB: xx1+yy1=9 ....(1) (Chord of contact) xh+yk=h2+k2 .....(2) (T=S1)
On comparing equation (1) and (2), we get hx1=ky1=h2+k29 x1=h2+k29h=3secθ y1=h2+k29k=2tanθ
On using sec2θ−tan2θ=1, we get (h2+k23h)2−(2(h2+k2)9k)2=1 ⇒981x2−481y2=(x2+y2)2⇒9x2−4y2=(9x2+y2)2 ∴k=9