Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
tan((π/4) +(θ/2)) + tan((π/4) - (θ/2)) is equal to
Q.
tan
(
4
π
+
2
θ
)
+
tan
(
4
π
−
2
θ
)
is equal to
9949
190
KEAM
KEAM 2017
Trigonometric Functions
Report Error
A
sec
θ
5%
B
2
sec
θ
55%
C
sec
2
θ
17%
D
sin
θ
12%
E
cos
θ
12%
Solution:
We have,
tan
(
4
π
+
2
θ
)
+
tan
(
4
π
−
2
θ
)
=
1
−
t
a
n
4
π
t
a
n
2
θ
t
a
n
4
π
+
t
a
n
2
θ
+
1
+
t
a
n
4
π
t
a
n
2
θ
t
a
n
4
π
−
t
a
n
2
θ
=
1
−
t
a
n
2
θ
1
+
t
a
n
2
θ
+
1
+
t
a
n
2
θ
1
−
t
a
n
2
θ
=
1
−
t
a
n
2
2
θ
(
1
+
t
a
n
2
θ
)
2
+
(
1
−
t
a
n
2
θ
)
2
=
1
−
t
a
n
2
2
θ
1
+
t
a
n
2
2
θ
+
2
t
a
n
2
θ
+
1
+
t
a
n
2
2
θ
−
2
t
a
n
2
θ
=
2
[
1
−
t
a
n
2
θ
/2
1
+
t
a
n
2
θ
/2
]
=
c
o
s
θ
2
[
∵
cos
2
θ
=
1
+
t
a
n
2
θ
1
−
t
a
n
2
θ
]
=
2
sec
θ