Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Suppose f is a function satisfying f(x+y)=f(x)+f(y) for all x, y ∈ N and f(1)=(1/5). If displaystyle∑n=1 text m (f(n)/n(n+1)(n+2))=(1/12), then m is equal to
Q. Suppose
f
is a function satisfying
f
(
x
+
y
)
=
f
(
x
)
+
f
(
y
)
for all
x
,
y
∈
N
and
f
(
1
)
=
5
1
. If
n
=
1
∑
m
n
(
n
+
1
)
(
n
+
2
)
f
(
n
)
=
12
1
, then
m
is equal to_____
1363
165
JEE Main
JEE Main 2023
Sequences and Series
Report Error
Answer:
10
Solution:
∵
f
(
1
)
=
5
1
∴
f
(
2
)
=
f
(
1
)
+
f
(
1
)
=
5
2
f
(
2
)
=
5
2
f
(
3
)
=
f
(
2
)
+
f
(
1
)
=
5
3
f
(
3
)
=
5
3
∴
n
=
1
∑
m
n
(
n
+
1
)
(
n
+
2
)
f
(
n
)
=
5
1
n
=
1
∑
m
(
n
+
1
1
−
n
+
2
1
)
=
5
1
(
2
1
−
3
1
+
3
1
−
4
1
+
…
.
+
m
+
1
1
−
m
+
2
1
)
=
5
1
(
2
1
−
m
+
2
1
)
=
10
(
m
+
2
)
m
=
12
1
∴
m
=
10