Since, α,β,γ are the roots of x3+x2+x+2=0 ∴α+β+γ=−1
Now, γα+β−2γ​=γ−1−γ−2γ​=γ−1−3γ​ ∴x=γ−1−3γ​⇒γ=x+3−1​
Now, the equation whose root is x+3−1​, is (x+3−1​)3+(x+3−1​)2+(x+3−1​)+2=0 ⇒−1+(x+3)−(x+3)2+2(x+3)3=0 ⇒−1+x+3−x2−9−6x+2x3+54+18x2+54x=0 ⇒2x3+17x2+49x+47=0 ∴(γα+β−2γ​)(αβ+γ−2α​)(βγ+α−2β​)=2−47​