Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Sum of the squares of all the solution(s) of the equation, 2 sin -1(x+2)= cos -1(x+3) is
Q. Sum of the squares of all the solution(s) of the equation,
2
sin
−
1
(
x
+
2
)
=
cos
−
1
(
x
+
3
)
is
211
150
Inverse Trigonometric Functions
Report Error
A
4
B
6.25
C
10.25
D
none
Solution:
Let
sin
−
1
(
x
+
2
)
=
αx
+
2
=
sin
α
∴
2
α
=
cos
−
1
(
x
+
3
)
cos
2
α
=
x
+
3
=
(
x
+
2
)
+
1
=
1
+
sin
α
1
−
2
sin
2
α
=
1
+
sin
α
sin
α
(
1
+
2
sin
α
)
=
0
⇒
sin
α
=
0
or
sin
α
=
−
1/2
∴
x
=
−
2
or
x
=
−
2.5
(rejected) as it does not satisfy the original equation
∴∴
x
2
=
6.25