z+z=iz2+z2
Consider z=x+iy 2x=(i+1)(x2−y2+2xyi) ⇒2x=x2−y2−2xy and x2−y2+2xy=0 ⇒2x=−4xy ⇒x=0 or y=2−1
Case 1:x=0 ⇒y=0 here z=0
Case 2:y=2−1 ⇒4x2−4x−1=0 (2x−1)2=2 2x−1=±2 x=21±2
Here z=21+2−2i or z=21−2−2i
Sum of squares of modulus of z =0+4(1+2)2+1+4(1−2)2+1=48=2