I. Let α=sin−1135 and β=cos−153 ⇒sinα=135 and cosβ=53 ⇒cosα=1−16925 and sinβ=1−259 ⇒cosα=1312 and sinβ=54 ⇒tanα=125 and tanβ=34(∵tanx=cosxsinx) ⇒α=tan−1125 and β=tan−134
Now, sin−1135+cos−153 =tan−1125+tan−134 =tan−1(36−2015+48) =tan−1(1663) ∴ Statement I is true.
II. Let cosα=53 ⇒sinα=1−259=54 ⇒tanα=34
Now, cos−1(53cosx+54sinx) =cos−1[cosαcosx+sinαsinx] =cos−1[cos(α−x)]=α−x=tan−134−x ∴ Statement II is false.