Q.
Statement I Polar form of (2−i)21+7i is 2[cos43π+isin43π]. Statement II Polar form of 1−2i1+3i is 2[cos43π+isin43π]
137
157
Complex Numbers and Quadratic Equations
Report Error
Solution:
First we will convert the given expressions into a+ib form and then reduce them into polar form
I. Let z=(2−i)21+7i=4+i2−4i1+7i
[use (a−b)2=a2+b2−2ab ] =4−1−4i1+7i(∵i2=−1) =3−4i1+7i×3+4i3+4i =(3)2−(4i)23+4i+21i+28i2[∵(a−b)(a+b)=a2−b2] =9−16i23+i(4+21)−28=9+16−25+25i(∵i2=−1) ⇒z=25−75+75i=−1+i
Now, let −1+i=rcos0+irsin0
On comparing the real and imaginary parts of both sides, we get rcosθ=−1....(i)
and rsinθ=1...(ii)
Squaring and adding Eqs. (i) and (ii), we get r2cos2θ+r2sin2θ=(−1)2+(1)2 r2(cos2θ+sin2θ)=1+1 ⇒r2=2(∵cos2θ+sin2θ=1) ⇒r=2
On dividing Eq. (ii) by Eq. (i), we get rcosθrsinθ=∣∣−11∣∣⇒tanθ=1=tan4π ⇒θ=4π
Since, the real part of z is negative and the imaginary part of z is positive. So, the point lies in II quadrant. ∴arg(z)=π−θ=π−4π=43π ∴z=−1+i=2[cos43π+isin43π]
which is the required polar form of (2−i)21+7i.
II. Let z=1−2i1+3i×1+2i1+2i=12−(2i)21+2i+3i+3i×2i [∵(a+b)(a−b)=a2−b2] =1−4i21+5i+6i2 (∵i2=−1) =1+41+5i−6=5−5+5i=−1+i,