Given differential equation can be written as dxdy−(cos2xtan2x)y=cos2x
Here, P=−cos2xtan2x=cos2x(2cos2x+1)−sin2x
and Q=cos2x ∵IF=e∫Pdx=e−∫cos2x(cos2x+1)2sin2xdx
Put cos2x=t⇒−2sin2xdx=dt ∴IF=e∫t1t1(t+11)dt =e∫(t1−t+11)dt =elogt−log(t+1)]=elogt+1t =elogcos2z−1=cos2x+1cos2x
Now, solution is y×cos2x+1cos2x=∫cos2x+1cos2x×cos2xdx+C =∫2cos2xcos2x×cos2xdx+C =21∫cos2xdx+C =21×2sin2x+C ⇒ycos2x+1cos2x=41sin2x+C ... (i)
But y(6π)=833 ∴833×cos(2×6π)+1cos(2×6π) =41sin2(6π)+C ⇒821+133=41×23+C ⇒2×8×2333=83+C ⇒83=83+C ⇒C=0
From Eq. (i), we get ycos2x+1cos2x=41sin2x+0 ⇒y=41cos2x+1cos2xsin2x =412cos2xcos2x−sin2xsin2x =21⋅1−tan2xsin2x