Given, 3tan(θ−15)=tan(θ+15). tanBtanA=13,
where A=θ+15∘,B=θ−15∘
On applying componendo and dividendo, we get ⇒tanA−tanBtanA+tanB=3−13+1 ⇒cosAsinA−cosBsinBcosAsinA+cosBsinB=2 ⇒sin(A−B)sin(A+B)=2 ⇒sin2θ=2sin30∘ ⇒sin2θ=2⋅21=1=sin2π ⇒2θ=nπ+(−1)n2π ⇒θ=2nπ+(−1)n4π