Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation x2 y d x=(x3+y3) dy with y(0)=1 is given by
Q. Solution of the differential equation
x
2
y
d
x
=
(
x
3
+
y
3
)
dy with
y
(
0
)
=
1
is given by
962
111
Differential Equations
Report Error
A
x
2
=
2
y
2
ln
y
B
x
3
=
3
y
3
ln
y
C
y
2
=
2
x
ln
x
D
y
3
=
3
x
3
ln
x
Solution:
Θ
x
2
y
d
x
=
(
x
3
+
y
3
)
d
y
=
x
3
d
y
+
y
3
d
y
⇒
x
2
(
y
d
x
−
x
d
y
)
=
y
3
d
y
⇒
y
2
x
2
d
(
y
x
)
=
y
d
y
⇒
3
y
3
x
3
=
ln
y
+
C
Θ
x
=
0
,
y
=
1
∴
0
=
0
+
c
⇒
c
=
0
∴
x
3
=
3
y
3
ln
y