Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation (ex2+ey2) y (d y/d x)+ex2(x y2-x)=0, text is
Q. Solution of the differential equation
(
e
x
2
+
e
y
2
)
y
d
x
d
y
+
e
x
2
(
x
y
2
−
x
)
=
0
,
is
382
118
Differential Equations
Report Error
A
e
x
2
(
y
2
−
1
)
+
e
y
2
=
C
B
e
y
2
(
x
2
−
1
)
+
e
x
2
=
C
C
e
y
2
(
y
2
−
1
)
+
e
x
2
=
C
D
e
x
2
(
y
−
1
)
+
e
y
2
=
C
Solution:
y
2
=
t
;
2
y
d
x
d
y
=
d
x
d
t
; Hence the differential equation becomes
(
e
x
2
+
e
t
)
d
x
d
t
+
2
e
x
2
(
x
t
−
x
)
=
0
e
x
2
+
e
t
+
2
e
x
2
⋅
x
(
t
−
1
)
d
t
d
x
=
0
put
e
x
2
=
z
;
e
x
2
⋅
2
x
d
t
d
x
=
d
t
d
z
z
+
e
t
+
d
t
d
z
(
t
−
1
)
=
0
d
t
d
z
+
(
t
−
1
)
z
=
−
(
t
−
1
)
e
t
;
I.F.
=
e
∫
t
−
1
d
t
=
e
l
n
(
t
−
1
)
=
t
−
1
z
(
t
−
1
)
=
−
∫
(
e
t
)
d
t
z
(
t
−
1
)
=
−
e
t
+
C
e
x
2
(
y
2
−
1
)
=
−
e
y
2
+
C
e
x
2
(
y
2
−
1
)
+
e
y
2
=
C