Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation (dx/dy)-(x log x/1+log x)=(ey/1+log x), if y(1)=0, is
Q. Solution of the differential equation
d
y
d
x
−
1
+
l
o
g
x
x
l
o
g
x
=
1
+
l
o
g
x
e
y
, if
y
(
1
)
=
0
, is
2665
208
Differential Equations
Report Error
A
x
x
=
e
y
e
y
36%
B
e
y
=
x
e
y
32%
C
x
x
=
y
e
y
18%
D
none of these
14%
Solution:
The given equation can be written as,
(
1
+
l
o
g
x
)
d
y
d
x
−
x
l
o
g
x
=
e
y
Putting
x
l
o
g
x
=
t
⇒
(
1
+
l
o
g
x
)
d
x
=
d
t
∴
d
y
d
t
−
t
=
e
y
Now,
I
.
F
=
e
∫
−
1
d
y
=
e
−
y
⇒
t
e
−
y
=
∫
e
−
y
e
y
d
y
+
C
⇒
t
=
C
e
y
+
y
e
y
⇒
x
l
o
g
x
=
(
C
+
y
)
e
y
,
Since,
y
(
1
)
=
0
, then
0
=
(
C
+
0
)
1
⇒
C
=
0
∴
y
e
y
=
x
l
o
gx
⇒
x
x
=
e
y
e
y