Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Solution of the differential equation 2 y sin x (d y/d x)= 2 sin x cos x-y2 cos x satisfying y((π/2))=1 is given by
Q. Solution of the differential equation
2
y
sin
x
d
x
d
y
=
2
sin
x
cos
x
−
y
2
cos
x
satisfying
y
(
2
π
)
=
1
is given by
2124
204
Differential Equations
Report Error
A
y
2
=
sin
x
B
y
=
sin
2
x
C
y
2
=
cos
x
+
1
D
y
2
sin
x
=
4
cos
2
x
Solution:
The given equation can be written as
2
y
sin
x
d
x
d
y
+
y
2
cos
x
=
sin
2
x
d
x
d
(
y
2
sin
x
)
=
sin
2
x
On integrating, we get
y
2
sin
x
=
2
−
1
cos
2
x
+
c
Put
x
=
2
π
,
y
=
1
, we get
c
=
2
−
1
Hence, the solution is
y
2
sin
x
=
2
1
(
1
−
cos
2
x
)
=
sin
2
x
⇒
y
2
=
sin
x