Let y=sinpθcosqθ. Then, dθdy=psinp−1θcosqθ+sinpθqcosq−1θ(−sinθ) ⇒dθdy=psinp−1θcosq+1θ−qsinp+1θcosq−1θ ⇒dθdy=sinp−1θcosq−1θ(pcos2θ−qsin2θ) ⇒dθdy=sinpθcosqθ(sinθcosθpcos2θ−qsin2θ) ⇒dθdy=sinpθcosqθ(pcotθ−qtanθ)
For maximum or minimum, we must have dθdy=0 ⇒sinpθcosqθ(pcotθ−qtanθ)=0 ⇒sinpθ=0 or cosqθ=0 or pcotθ−qtanθ=0 ⇒sinpθ=0 or cosqθ=0 or, tanθ=qp=α ⇒θ=0 or, θ=2π or, θ=tan−1qp=α(say)
Now, dθdy=sinpθcosqθ(pcotθ−qtanθ) =y(pcotθ−qtanθ) ⇒dθ2d2y=dθdy(pcotθ−qtanθ)+y(−pcosec2θ−qsec2θ) ⇒(dθ2d2y)θ=α=(dθdy)θ=α(ppq−qqp) +sinpθcosqθ[−pcosec2θ−qsec2θ] ⇒(dθ2d2y)θ=α=0−sinpθcosqθ(pcosec2θ−qsec2θ)
Hence, y is maximum when θ=α=tan−1qp.