Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
If sin A , sin B , cos A are in GP, then roots of x 2+2 x cot B +1=0 are always
Q. If
sin
A
,
sin
B
,
cos
A
are in GP, then roots of
x
2
+
2
x
cot
B
+
1
=
0
are always
2543
216
BITSAT
BITSAT 2005
Report Error
A
real
43%
B
imaginary
14%
C
greater than 1
14%
D
equal
29%
Solution:
sin
A
,
sin
B
,
cos
A
are in G.P.
∴
sin
2
B
=
sin
A
cos
A
→
1
x
2
+
2
x
cot
B
+
1
=
0
D
=
(
2
cot
B
)
2
−
4
(
1
)
(
1
)
D
=
4
cot
2
B
−
4
D
=
4
[
s
i
n
2
B
c
o
s
2
B
−
1
]
D
=
4
[
s
i
n
2
B
c
o
s
2
B
−
s
i
n
2
B
]
D
=
4
[
s
i
n
2
B
1
−
s
i
n
2
B
−
s
i
n
2
B
]
[
∵
cos
2
θ
+
sin
2
θ
=
1
]
D
=
4
[
s
i
n
2
B
1
−
2
s
i
n
2
B
]
D
=
4
[
s
i
n
2
B
1
−
2
s
i
n
A
c
o
s
A
]
(From equation 1)
D
=
4
[
s
i
n
2
B
s
i
n
2
A
+
c
o
s
2
A
−
2
s
i
n
A
c
o
s
A
]
D
=
4
[
s
i
n
2
B
(
s
i
n
A
−
c
o
s
A
)
2
]
D
=
[
s
i
n
B
2
(
s
i
n
A
−
c
o
s
A
)
]
2
≥
0
Therefore, roots of given equation are real.