We have the function y=sin−1(1+x2x2)
For y to be defined ∣∣1+x2x2∣∣<1 which is true for all x∈R
Now, y=sin−1(1+x2x2) ⇒1+x2x2=siny ⇒x=1−sinysiny
For the existance of xsiny≥0 and 1−siny>0 ⇒0≤siny<1 ⇒0≤y<2π
Thus, range of the given function is [0,2π).