Q.
On which of the following intervals is the function x100+sinx−1 decreasing?
2026
215
NTA AbhyasNTA Abhyas 2020Application of Derivatives
Report Error
Solution:
f(x)=x100+sinx−1 ⇒f′(x)=100x99+cosx
If 0<x<2π, then f′(x)>0, , therefore f(x) is increasing on (0,2π).
If 0<x<1, then 100x99>0 and cosx>0 [ ∵x lies between 0 and 1 ] ⇒f′(x)=100x99+cosx>0 ⇒f(x) is increasing on (0,1).
If 2π<x<π, then 100x99>100[∵x>1⇒x99>1] ⇒100x99+cosx>0[∵cosx≥−1⇒100x99+cosx>99] ⇒f′(x)>0⇒f(x) is increasing in (2π,π).