The number of selection = coefficient of x8 in (1+x+x2+....+x8)(1+x+x2+......+x8).(1+x)8
= coefficient of x8 in (1−x)2(1−x9)2(1+x)8
= coefficient of x8in(1+x)8in(1+x8)(1−x)−2
= coefficient of x8 in (8C0+8C1x+8C2x2+.....+8C8x8) ×(1+2x+3x2+4x3+.....+9x8+....) =9.8C0+8⋅8C1+7.8C2+....+1.8C8 =C0+2C1+3C2+....+9C8[Cr=8Cr]
Now C0x+C1x2+....+C8x9=x(1+x)8
Differentiating with respect to x, we get C0+2C1x+3C2x2+....9C8x8=(1+x)8+8x(1+x)7
Putting x=1, we get C0+2C1+3C2+.....+9C8 =28+8.27.=27(2+8)=10.27.