Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of values of m ∈ N for which y =e mx is a solution of the differential equation D3 y-3 D2 y-4 D y+12 y=0 is -
Q. Number of values of
m
∈
N
for which
y
=
e
m
x
is a solution of the differential equation
D
3
y
−
3
D
2
y
−
4
Dy
+
12
y
=
0
is -
1520
164
Differential Equations
Report Error
A
0
B
1
C
2
D
more than 2
Solution:
y
=
e
m
x
then
D
(
y
)
=
m
e
m
x
,
D
2
(
y
)
=
m
2
e
m
x
D
3
(
y
)
=
m
3
e
m
x
then given
D
3
y
−
3
D
2
y
−
4
Dy
+
12
y
=
0
⇒
m
3
e
m
x
−
3
m
2
e
m
x
−
4
m
e
m
x
+
12
e
m
x
=
0
⇒
m
3
−
3
m
2
−
4
m
+
12
=
0
(
∵
e
m
x
=
0
)
⇒
(
m
−
2
)
(
m
−
3
)
(
m
+
2
)
=
0
⇒
m
=
2
,
3
,
−
2
Hence number of values of
m
∈
N
will be 2 .