We have, tan−1(2x+11)+tan−1(4x+11)=tan−1(x22) ⇒tan−1{1−(2x+11)(4x+11)2x+11+4x+11}=tan−1(x22) ⇒tan−1(8x2+6x6x+2)=tan−1(x22) ⇒tan{tan−1(2x(4x+3)2(3x+1))}=x22 ⇒x(4x+3)3x+1=x22 ⇒3x2−7x−6=0 ⇒(x−3)(3x+2)=0 ⇒x=3 or x=3−2 ∴ The given equation has 2 solutions.