Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Number of solutions of the equation log 10(√5 cos -1 x-1)+(1/2) log 10(2 cos -1 x+3)+ log 10 √5=1 is
Q. Number of solutions of the equation
lo
g
10
(
5
cos
−
1
x
−
1
)
+
2
1
lo
g
10
(
2
cos
−
1
x
+
3
)
+
lo
g
10
5
=
1
is
114
124
Inverse Trigonometric Functions
Report Error
A
0
B
1
C
more than one but finite
D
infinite
Solution:
cos
−
1
x
=
t
⇒
x
∈
[
−
1
,
1
]
and
t
∈
[
0
,
π
]
lo
g
10
5
t
−
1
+
2
1
lo
g
10
(
2
t
+
3
)
+
2
1
lo
g
10
5
=
1
;
(
t
>
5
1
andt
=
−
2
3
)
lo
g
10
((
5
t
−
1
)
(
2
t
+
3
)
⋅
5
)
=
2
(
5
t
−
1
)
(
2
t
+
3
)
⋅
5
=
100
(
5
t
−
1
)
(
2
t
+
3
)
=
20
10
t
2
+
13
t
−
3
=
20
10
t
2
+
23
t
−
10
t
−
23
=
0
t
(
10
t
+
23
)
−
(
10
t
+
23
)
=
0
(
t
−
1
)
(
10
t
+
23
)
=
0
⇒
t
=
1
or
t
=
−
10
23
(rejected)
cos
−
1
x
=
1
⇒
x
=
cos
1