cos−1(x3)+cos−1(x)=2π⇒cos−1(x3)=2π−cos−1(x)=sin−1(x) cos−1(x3)=sin−1(x); Let sin−1(x)=θ ∴x=sinθ and cos−1(x3)=θ x3=cosθ and sin2θ+cos2θ=1 ∴x2+3x2=1 x=21 or −21
If x=21
L.H.S. of (1) =6π+3π=2π =2−1
L.H.S. of (1) =65π+32π=2π
Hence x=21 is the only solution. ⇒B