sinx−sinx1=cosx sinx+sinx1−2=(cos)2x=(1−(sin)2x)
Let sinx=t t+t1−2=1−t2 t2−2t+1=t(1−t)(1+t) ⇒(1−t)[(1−t)−t(1+t)]=0 ⇒(1−t)[1−2t−t2]=0 t=1,t2+2t−1=0 sinx=1,sinx=2−2±4+4 sinx=−1±2 sinx=1,⇒x=2π
also sinx=2−1 and cosx<0 ⇒ one solution is (0,2π)