Q.
Number of integral values of ' a ' for which the equation sin4x−2cos2x+a2=0 has a solution, is
419
88
Complex Numbers and Quadratic Equations
Report Error
Solution:
sin4x−2cos2x+a2=0 sin4x+2sin2x+a2−2=0 Put sin2x=y,y∈[0,1] y2+2y+a2−2=0 y2+2y+a2−2=0 ....(1)
for solution, D≥0 4−4(a2−2)≥0 1−a2+2≥0⇒a2≤3
Solution of equation (1), y=2−2±4−4(a2−2)=−1±3−a2
But, 0≤y≤1⇒0≤−1±3−a2≤1 ⇒1≤±3−a2≤2⇒1≤3−a2≤4 ⇒−2≤−a2≤+1⇒−1≤a2≤2 ⇒a2≤2 a∈[−2,2]
Number of integral values =3.