Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Minimize z = ∑nj =1∑ ni =1 cij x ij Subject to: ∑ nj =1xij le ai , i = 1,.........,m ∑ ni=1 xij = bj , j = 1,.......,n is a (L.P.P.) with number of constraints
Q. Minimize
z
=
∑
j
=
1
n
∑
i
=
1
n
c
ij
x
ij
Subject to :
∑
j
=
1
n
x
ij
≤
a
i
,
i
=
1
,
.........
,
m
∑
i
=
1
n
x
ij
=
b
j
,
j
=
1
,
.......
,
n
is a (L.P.P.) with number of constraints
2770
212
Linear Programming
Report Error
A
m
+
n
41%
B
m
−
n
16%
C
mn
33%
D
n
m
10%
Solution:
Condition (i),
i
=
1
,
x
11
+
x
12
+
x
13
+
.....
+
x
1
n
i
=
2
,
x
21
+
x
22
+
x
23
+
....
+
x
2
n
i
=
3
,
x
31
+
x
32
+
x
33
+
.....
+
x
3
n
...............
i
=
m
,
x
m
1
+
x
m
2
+
x
m
3
+
.....
x
mn
→
constraints
Condition (ii),
j
=
1
,
x
11
+
x
21
+
x
31
+
.......
+
x
m
1
j
=
2
,
x
12
+
x
22
+
x
32
+
.....
+
x
m
1
............
j
=
n
,
x
1
n
+
x
2
n
+
x
3
n
+
....
+
x
mn
→
n
constraints
∴
Total constraints =
=
m
+
n