We have f′(x)=(12sin2x−18sinx+6)cosx=0 ∴ Either cosx=0⇒x=2π
or 6(2sin2x−3sinx+1)=0 or (sinx−1)(2sinx−1)=0 or sinx=1 or sinx=21 ⇒x=2π or x=6π or x=65π
Now, f(0)=f(π)=6 f(2π)=4+6−3=7 f(6π)=84+9(43)+3−3=21+427=429 f(65π)=4(81)+9(43)+3−3=429 ∴fmax(x=6π or 65π)=429