A. Let cot−1(3)=θ⇒cotθ=3
We know that, the range of principal value branch of cot−1θ is (0,π). ∵cotθ=3=cot6π⇒θ=6π where, θ∈(0,π) ⇒cot−1(3)=6π
Hence, the principal value of cot−1(3) is 6π.
B. Let cos−1(−21)=θ⇒cosθ=−21
We know that the range of principal value branch of cos−1θ is [0,π] ∵cosθ=−21=−cos4π=cos(π−4π) ⇒[∵cos(π−θ)=−cosθ)] θ=43π where, θ∈[0,π] ⇒cos−1(−21)=43π
Hence, the principal value of cos−1(−21) is 43π.
C. Let cosec−1(−2)=θ⇒cosecθ=−2
We know that, the range of principal value branch of cosec−1θ is [−2π,2π]−{0}. ∵cosecθ=−2=−cosec4π=cosec(−4π) [∵cosec(−θ)=−cosecθ] ⇒θ=−4π where, θ∈[−2π,2π]−{0} ⇒cosec−1(−2)=−4π
Hence, the principal value of cosec−1(−2) is −4π.
D. Let cos−1(21)=x⇒cosx=21=cos3π ⇒x=3π∈[0,π] (principal value branch)
Again, let sin−1(21)=y ⇒siny=21=sin6π ⇒y=6π∈[−2π,2π] (principal value branch) ∴cos−1(21)+2sin−1(21)=x+2y =3π+2×6π=32π