Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
lim x → 0 ( (1 - cos 2x) (3 + cos x)/ x tan 4x) is equal to
Q.
l
i
m
x
→
0
x
t
an
4
x
(
1
−
cos
2
x
)
(
3
+
cos
x
)
is equal to
2189
227
JEE Advanced
JEE Advanced 2013
Report Error
A
4
0%
B
3
5%
C
2
74%
D
2
1
21%
Solution:
We have
l
i
m
x
→
0
x
t
an
4
x
(
1
−
cos
2
x
)
(
3
+
cos
x
)
=
l
i
m
x
→
0
x
×
4
x
t
an
4
x
×
4
x
2
s
i
n
2
x
(
3
+
cos
x
)
=
l
i
m
x
→
0
x
2
2
s
i
n
2
x
×
l
i
m
x
→
0
4
(
3
+
cos
x
)
×
l
i
m
x
→
0
4
x
t
an
4
x
1
=
2
×
4
4
×
1
[
∵
l
i
m
h
e
t
a
→
0
h
e
t
a
s
in
h
e
t
a
=
1
an
d
l
i
m
h
e
t
a
→
0
h
e
t
a
t
an
=
1
]
= 2.