Q.
lf f(x)= sin(t→0limπ2x(cot)−1t2x), then ∫−2π2πf(x)dx is equal to (where, x=0 )
1815
191
NTA AbhyasNTA Abhyas 2020Integrals
Report Error
Solution:
Let y=limt→0π2xcot−1t2x
Case-I: when x>0 then y=π2xlimt→0cot−1t2x=π2x×0=0
Case-II : when x<0 then y=π2xlimt→0cot−1t2x=π2x×π=2x f(x)={sin0sin2xx>0x<0
Now, ∫2−π2πf(x)dx=∫−2π0sin2xdx+∫02π0dx=−(2cos2x)−2π0=−21(1−(−1))