Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let z ∈ C be such that |z| < 1. If ω = (5 + 3z/5( 1 - z)), then :
Q. Let
z
∈
C
be such that
∣
z
∣
<
1
. If
ω
=
5
(
1
−
z
)
5
+
3
z
, then :
3893
242
JEE Main
JEE Main 2019
Complex Numbers and Quadratic Equations
Report Error
A
5
I
m
(
ω
)
<
1
14%
B
4
I
m
(
ω
)
>
5
12%
C
5
R
e
(
ω
)
>
1
71%
D
5
R
e
(
ω
)
>
4
3%
Solution:
∣
z
∣
<
1
5
ω
(
1
−
z
)
=
5
+
3
z
5
ω
−
5
ω
z
=
5
+
3
z
z
=
3
+
5
ω
5
ω
−
5
∣
z
∣
=
5
∣
∣
3
+
5
ω
ω
−
1
∣
∣
<
1
5
∣
ω
−
1
∣
<
∣
3
+
5
ω
∣
5
∣
ω
−
1
∣
<
5
∣
∣
ω
+
5
3
∣
∣
∣
ω
−
1
∣
<
5
∣
∣
ω
−
(
−
5
3
)
∣
∣